
Web Fuzzing Cheatsheet

What is Web Fuzzing?
Web fuzzing is a technique used to discover vulnerabilities, hidden resources, and security
issues in web applications by automatically injecting a large set of input data into the
application and analyzing its response. The goal is to identify unexpected behaviors or
errors that could indicate potential security weaknesses or misconfigurations.

Fuzzing is commonly employed in security testing to find:

Hidden directories and files
Insecure APIs and endpoints
SQL injection points
Cross-site scripting (XSS) vulnerabilities
Command injection flaws

Comparison: Brute-Forcing vs. Fuzzing

Criteria Brute-Forcing Fuzzing

Definition Systematically trying all
possible combinations of input
data to guess a specific value.

Injecting unexpected or random data
into an application to find
vulnerabilities and hidden resources.

Purpose Crack passwords, keys, or
other access credentials.

Discover application vulnerabilities,
hidden files, directories, and input
validation issues.

Methodology Exhaustive search over all
possible input combinations.

Dynamic input injection to provoke
unexpected application responses.

UPDATE: WEB FUZZING

CHEAT SHEET

Criteria Brute-Forcing Fuzzing

Focus Specific input or data, such as
passwords or API keys.

General application behavior under
various input conditions.

Efficiency Time-consuming due to
exhaustive nature; less
efficient for large input spaces.

More efficient in identifying
unexpected behaviors and
vulnerabilities with varied input.

Tools Used Password crackers, key
recovery tools.

Web fuzzers, vulnerability scanners.

Output Successful match of the
correct input value.

Discovery of vulnerabilities,
misconfigurations, and hidden
resources.

Miscellaneous Commands
Below are some useful commands that can aid in various tasks related to web fuzzing and
testing.

Command Description

sudo sh -c 'echo "SERVER_IP academy.htb" >>
/etc/hosts'

Add a DNS entry for a
specific IP address to
the /etc/hosts file. This
helps resolve domain
names locally.

for i in $(seq 1 1000); do echo $i >> ids.txt; done Create a sequence
wordlist from 1 to 1000.
Useful for brute-forcing
numerical IDs or similar
patterns.

curl http://admin.academy.htb:PORT/admin/admin.php -X
POST -d 'id=key' -H 'Content-Type: application/x-www-
form-urlencoded'

Use curl to send a
POST request with
specific data and
headers, simulating
form submissions or
API calls.

Commonly Used SecLists Wordlists
SecLists is a collection of multiple types of wordlists used by security researchers and
penetration testers. Below is a table of some commonly used wordlists from SecLists,
which can be incredibly valuable during web fuzzing.

Wordlist Description

/usr/share/seclists/Discovery/Web-
Content/common.txt

General-Purpose Wordlist: Contains a
broad range of common directory and
file names on web servers. It's an
excellent starting point for fuzzing and
often yields valuable results.

/usr/share/seclists/Discovery/Web-
Content/directory-list-2.3-medium.txt

Directory-Focused Wordlist: A more
extensive wordlist specifically focused
on directory names. It's a good choice
when you need a deeper dive into
potential directories.

/usr/share/seclists/Discovery/Web-
Content/raft-large-directories.txt

Large Directory Wordlist: Boasts a
massive collection of directory names
compiled from various sources. It's a
valuable resource for thorough fuzzing
campaigns.

/usr/share/seclists/Discovery/Web-
Content/big.txt

Comprehensive Wordlist: A massive
wordlist containing both directory and
file names. Useful when you want to
cast a wide net and explore all
possibilities.

Tips for Using Wordlists Effectively

Tip Explanation

Choose the Right
Wordlist

Select wordlists relevant to the target environment and
technology stack for better results.

Combine Wordlists Use multiple wordlists together to increase the breadth of
your fuzzing efforts.

Customize Wordlists Modify existing wordlists or create your own based on
specific knowledge about the target.

https://github.com/danielmiessler/SecLists

Tip Explanation

Monitor Performance Large wordlists can be resource-intensive; monitor
performance and adjust as needed.

Leverage Community
Resources

Utilize community-maintained wordlists for the latest and
most effective fuzzing strategies.

Tools for Web Fuzzing

ffuf (Fuzz Faster U Fool)

ffuf is a fast web fuzzer written in Go that allows you to discover directories and files on
web servers.

Command Description

ffuf -u http://example.com/FUZZ Basic fuzzing of a URL path.

ffuf -u http://example.com/FUZZ -w
wordlist.txt

Fuzz with a specific wordlist.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -ic

Fuzz with a specific wordlist,
automatically ignoring any comments
in the wordlist.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -c

Colorize the output for better
readability.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -mc 200

Filter results by status code (e.g.,
200).

ffuf -u http://example.com/FUZZ -w
wordlist.txt -mr "Welcome"

Filter results by matching a regex
pattern.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -e .php,.html

Add extensions to each wordlist entry.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -t 50

Set the number of threads (e.g., 50)
for faster fuzzing.

ffuf -u http://example.com/FUZZ -w
wordlist.txt -x http://127.0.0.1:8080

Use a proxy for requests.

gobuster

gobuster is a tool used to brute-force URIs (directories and files) in web sites and DNS
subdomains.

Command Description

gobuster dir -u http://example.com -w
wordlist.txt

Directory fuzzing using a
wordlist.

gobuster dir -u http://example.com -w
wordlist.txt -x .php,.html

Fuzz with specific extensions.

gobuster dir -u http://example.com -w
wordlist.txt -s 200

Filter results by status code (e.g.,
200).

gobuster dir -u http://example.com -w
wordlist.txt -t 50

Set the number of concurrent
threads (e.g., 50).

gobuster dir -u http://example.com -w
wordlist.txt -o results.txt

Output results to a file.

gobuster dns -d example.com -w subdomains.txt Fuzz DNS subdomains using a
wordlist.

gobuster dns -d example.com -w subdomains.txt
-i

Show IP addresses of
discovered subdomains.

gobuster dns -d example.com -w subdomains.txt
-z

Silent mode; suppress output
except for results.

wneum (Wfuzz Fork)

wneum is a fork of wfuzz, a versatile web application fuzzer for testing web security.

Command Description

wneum -c -z file,wordlist.txt --hc 404
http://example.com/FUZZ

Basic fuzzing excluding 404
responses.

wneum -c -z file,wordlist.txt -d
'username=FUZZ&password=secret'

Fuzz POST data in a form.

wneum -c -z file,wordlist.txt -b
'session=12345'

Use a specific cookie for
requests.

Command Description

wneum -c -z file,wordlist.txt -H 'User-Agent:
Wneum'

Add a custom header to
requests.

wneum -c -z file,wordlist.txt -t 50 Set the number of threads (e.g.,
50) for faster fuzzing.

wneum -c -z file,wordlist.txt -u
http://example.com/FUZZ -X PUT

Fuzz using a specific HTTP
method (e.g., PUT).

wneum -c -z file,wordlist.txt --hl 50 Filter responses by content
length (e.g., 50 bytes).

feroxbuster

feroxbuster is a tool designed for recursive content discovery and web fuzzing.

Command Description

feroxbuster -u http://example.com -w
wordlist.txt

Basic URL fuzzing with a wordlist.

feroxbuster -u http://example.com -w
wordlist.txt -e

Include specified file extensions in
fuzzing.

feroxbuster -u http://example.com -w
wordlist.txt -x 404

Exclude responses with status
code 404.

feroxbuster -u http://example.com -w
wordlist.txt -t 50

Set the number of concurrent
threads (e.g., 50).

feroxbuster -u http://example.com -w
wordlist.txt --depth 3

Set maximum recursion depth
(e.g., 3 levels deep).

feroxbuster -u http://example.com -w
wordlist.txt -o results.txt

Save output to a file.

feroxbuster -u http://example.com -w
wordlist.txt --no-recursion

Disable recursion into discovered
directories.

feroxbuster -u http://example.com -w
wordlist.txt --url-redirect

Follow redirects automatically.

Tips for Effective Web Fuzzing

Tip Explanation

Use Comprehensive
Wordlists

The quality of your wordlist can significantly impact results;
choose or create wordlists relevant to the target.

Filter Unwanted
Responses

Use status codes or response size filtering to focus on
meaningful results and reduce noise.

Adjust Thread Count Increase thread count for faster fuzzing, but be mindful of
server capabilities to avoid overloading.

Monitor Server
Responses

Pay attention to anomalies or unexpected behavior in server
responses, indicating potential vulnerabilities.

Fuzz with Various
HTTP Methods

Test different HTTP methods (GET, POST, PUT, DELETE)
to uncover potential vulnerabilities in all endpoints.

Web APIs: REST, SOAP, and GraphQL

What is a Web API?

A Web API (Application Programming Interface) is a set of rules and protocols for building
and interacting with software applications. APIs allow different applications to communicate
with each other over the internet, enabling the integration of various services and data
exchange.

Web APIs can be categorized into three main types:

1. REST (Representational State Transfer)
2. SOAP (Simple Object Access Protocol)
3. GraphQL

Each type has its own unique characteristics, advantages, and use cases.

REST (Representational State Transfer)

REST is an architectural style that uses standard HTTP methods to access and manipulate
resources on a server. It is known for its simplicity, scalability, and statelessness.

Feature Description

Protocol Uses HTTP/HTTPS.

Feature Description

Data Format Typically JSON, but can also use XML, HTML, or plain text.

Stateless Each request from a client to a server must contain all the
information needed.

CRUD
Operations

Uses HTTP methods: GET, POST, PUT, DELETE.

Scalability Highly scalable due to its stateless nature.

Caching Supports caching mechanisms to improve performance.

URL Structure Uses endpoints that represent resources, e.g., /api/users/{id}.

Advantages Simplicity, flexibility, scalability.

Disadvantages Can lead to over-fetching or under-fetching data.

REST Fuzzing Tips:

Tip Explanation

Test All HTTP Methods Ensure all CRUD operations are tested, as vulnerabilities
might exist in any of them.

Validate Input Fields Fuzz input fields with unexpected data types and formats
to uncover validation issues.

Examine Error Messages Analyze error messages for information disclosure or
unintended behavior.

Test Authentication
Mechanisms

Check for improper authentication and authorization
controls.

Explore API Rate Limits Test rate limits and throttling controls to ensure the API
handles requests properly.

Use Comprehensive
Payloads

Leverage a variety of payloads (SQLi, XSS) to test for
potential security flaws.

Tip Explanation

Check Resource
Representation

Test different resource representations (JSON, XML) for
consistency and security flaws.

SOAP (Simple Object Access Protocol)

SOAP is a protocol for exchanging structured information in web services. It uses XML as its
message format and can operate over various protocols like HTTP, SMTP, or TCP.

Feature Description

Protocol Protocol-independent but often used with HTTP/HTTPS.

Data Format Exclusively XML.

Stateful/Stateless Can be either stateful or stateless.

WS-Security Built-in security features for message integrity and
confidentiality.

Error Handling Uses specific error codes and messages.

Complexity More complex due to extensive standards and specifications.

Extensibility Highly extensible via WS-* standards.

Advantages Strong security, reliability, and extensibility.

Disadvantages More complex and less flexible compared to REST.

SOAP Fuzzing Tips:

Tip Explanation

Analyze WSDL Files Use WSDL (Web Services Description Language) files to
understand the service's operations and inputs.

Validate XML Schema Test XML inputs against the schema to identify validation
flaws.

Check for XML Injection Fuzz XML data to test for injection vulnerabilities.

Tip Explanation

Test SOAP Headers Fuzz SOAP headers to find potential security issues or
misconfigurations.

Evaluate WS-Security
Implementations

Ensure security implementations are robust and
correctly configured.

Test Transport Security Verify that transport-level security (e.g., HTTPS) is
enforced and properly implemented.

Examine SOAP Faults Analyze SOAP fault messages for potential information
leakage.

GraphQL

GraphQL is a query language and runtime for APIs that allows clients to request specific data
and define the structure of the response.

Feature Description

Protocol Uses HTTP/HTTPS, typically over POST requests.

Data Format JSON-based queries and responses.

Stateful/Stateless Stateless architecture.

Query Flexibility Clients can request exactly what they need, minimizing over-
fetching and under-fetching.

Single Endpoint Typically uses a single endpoint for all operations.

Introspection Allows clients to query the API schema for available operations
and data types.

Advantages Efficiency, flexibility, and powerful developer tooling.

Disadvantages Potential for complex queries leading to performance issues if
not properly managed.

GraphQL Fuzzing Tips:

Tip Explanation

Test Query Depth and
Complexity

Evaluate the server's handling of deeply nested or
complex queries to avoid performance bottlenecks.

Validate Input Types
and Arguments

Fuzz input arguments with unexpected values and data
types to uncover validation flaws.

Examine Query Aliasing
and Batching

Test the server's response to aliased queries and
batching for potential information leakage.

Check for Introspection
Misuse

Ensure introspection is not exposing sensitive
information or internal schema details.

Assess Authorization
Controls

Verify that access controls are properly enforced for
different queries and operations.

Evaluate Rate Limiting Test rate limits to ensure the API can handle excessive or
malicious requests appropriately.

Fuzz Mutations Mutations can alter data; test for security issues and
improper input validation.

